
pmlbeta Documentation
Release 1.0.10.dev10+g2841a2c.d20210927

András Wacha

Sep 27, 2021

Contents:

1 Installation 3
1.1 Requirements . 3
1.2 Installing from a pre-built package . 3
1.3 Manual installation . 3

2 Quick start 5
2.1 Command line . 5
2.2 Graphical user interface . 7

2.2.1 Betafab GUI . 7
2.2.2 Secondary structure editor . 8

3 𝛽-amino acid residue naming 9
3.1 General nomenclature . 9
3.2 Simplified nomenclature . 10
3.3 Secondary structure . 12

3.3.1 Single-letter side-chain codes . 12

4 Secondary structure database 13
4.1 Python API documentation . 14

5 Residue Topology Recognition 15

6 Commands 17
6.1 𝛼/𝛽-peptide Construction and Manipulation . 17
6.2 Residue Topology Recognition . 17
6.3 Input / Output . 17
6.4 Secondary structure database manipulation . 18
6.5 Miscellaneous . 18

6.5.1 betafab2 . 18
6.5.2 fold_bp . 18
6.5.3 select_bbb . 18
6.5.4 save_crd . 18
6.5.5 save_g96 . 18
6.5.6 save_gro . 18
6.5.7 ssdb_add . 18
6.5.8 ssdb_del . 18
6.5.9 ssdb_list . 18

i

6.5.10 ssdb_dihedrals . 18
6.5.11 ssdb_resetdefaults . 18
6.5.12 gmx_beta_backbone_dihedrals_selection . 18
6.5.13 renumber_peptide_chain . 18
6.5.14 residue_topology_candidates . 18
6.5.15 assign_residue_topology . 18

7 Citing pmlbeta 19

8 Reporting bugs 21

9 Indices and tables 23

ii

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

pmlbeta is an extension for PyMOL, containing utilities and algorithms for dealing with 𝛽-peptides. It has facilities
for creating and manipulating geometries of natural 𝛼- and artificial 𝛽- and even mixed 𝛼/𝛽-peptides.

This program has been developed by the BioNano Platform of the Hungarian Research Centre for Natural Sciences

Contents: 1

https://pymol.org
https://bionano.ttk.hu
https://bionano.ttk.hu
https://www.ttk.hu

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

2 Contents:

CHAPTER 1

Installation

1.1 Requirements

pmlbeta is an extension for the PyMOL molecular graphics system. Only version 2.0 and above is supported. The
additional dependencies are:

Python: at least version 3.0 is needed, 3.5 and above is tested. Python 2 is not supported.

PyQt5: for the graphical user interface

PyMOL: testing is done with the most up-to-date open source version, currently 2.3.0. Other versions above 2.0
should also work, but not guaranteed. However, if you find compatibility issues, please file a bug report.

1.2 Installing from a pre-built package

Download the latest binary package from https://gitlab.com/awacha/pmlbeta/raw/binaries/pmlbeta_latest.zip and in-
stall it with the plugin manager of PyMOL.

Please note that PyMOL (at least up to the open source version 2.3.0) only supports installing ZIP plugins by manually
downloading them and selecting the downloaded file. Giving the above URL to the package manager does not work.

1.3 Manual installation

Check out the git repository:

$ git clone https://gitlab.com/awacha/pmlbeta.git

Create the plugin zip file with:

$ python makebundle.py

Then use the plugin manager of PyMOL to install the plugin from the just created zip file.

3

https://www.pymol.org
https://gitlab.com/awacha/pmlbeta/raw/binaries/pmlbeta_latest.zip

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

4 Chapter 1. Installation

CHAPTER 2

Quick start

The main goal of pmlbeta is to provide tools for building molecular models of 𝛽-peptides (or even mixed 𝛼/𝛽-peptides).
The idea is mostly taken from the fab command of PyMOL, which can create peptides in a desired secondary structure.
The construction of 𝛽-peptides can be done by two means: either using the command-line or a graphical user interface.

2.1 Command line

The command betafab2 can be used for creating 𝛼/𝛽-peptides in extended conformation:

betafab2 hp6, (2R3S)B23h(2A3A), (2R3S)B23h(2A3V), (S)B2hV, (S)B3hK, (2R3S)B23h(2A3A),
→˓(2R3S)B23h(2A3L)

betafab2 valxval, (S)B3hV, (S)B3hA, (S)B3hL, (2S3S)B23h(2A3A), (S)B3hV, (S)B3hA,
→˓(S)B3hL

betafab valval, (S)AV, (S)AA, (S)AL, (S)AV, (S)AA, (S)AL

betafab mixed, (S)AV, (S)B3hV, (R)B2hA, (S)AQ, (2R3S)B23h(2C3W)

The first argument is always the PyMOL object name, followed by the residue abbreviations following the notation in
Simplified nomenclature

Folding a peptide into the desired secondary structure is possible by supplying the desired secondary structures for the
amino-acids in betafab2:

betafab2 valxval, (S)B3hV{H14M}, (S)B3hA[-140.3 66.5 136.8], (S)B3hL{H14M}

Another option is to fold an already built peptide using the fold_bp command:

fold_bp H14M, valxval # folds all residues the "valxval" model to the H14M helix

fold_bp (-140.3 66.5 136.8), valxval # the same as above, just the torsion angles
→˓are explicitly given

5

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

Instead of folding the entire peptide to the same secondary structure, this can be done residue-by-residue:

betafab2 test, (S)B3hA, (S)B3hA, (S)B3hA, (S)B3hA, (S)B3hV, (S)B3hA, (S)B3hA

fold_bp [H14M H14M H14M H14M H14M H14M H14M], test

fold_bp [H14M (-140.3 66.5 136.8) H14M H14M H14M (-140.3 66.5 136.8) H14M], test #
→˓the same as above

Note that not every peptide sequence supports every secondary structure. For example, you will find steric clashes if
you try to fold an (R)-homochiral 𝛽3-peptide into the H14M helix:

betafab2 invalid, (R)B3hL, (R)B3hL, (R)B3hL, (R)B3hL, (R)B3hL

fold_bp H14M, invalid

In other cases when the sequence and the desired fold are compatible, you can still get steric clashes because the folding
procedure does not touch the side-chains. Luckily these can easily be removed by the sculpting facility of PyMOL.
For example, when the above peptide is produced in the default, extended conformation, there is a steric clash between
the leucine side-chains and the amide oxygen. To resolve them, first fix the backbone atoms and initialize sculpting.

betafab2 clash, (R)B3hL, (R)B3hL, (R)B3hL, (R)B3hL, (R)B3hL

select the backbone -> makes a new selection (bbone)
select_bbb bbone, invalid

fix the backbone atoms
flag fix, (bbone), set

Initialize sculpting
sculpt_activate invalid

Do some iterations
sculpt_iterate invalid, cycles=1000

Deactivate sculpting
sculpt_deactivate invalid

make the backbone atoms free
flag fix, (bbone), clear

Or if your PyMOL installation “includes modelling capabilities”1, you can get even better results with the clean
command:

betafab2 clash, (R)B3hL, (R)B3hL, (R)B3hL, (R)B3hL, (R)B3hL

select the backbone -> makes a new selection (bbone)
select_bbb bbone, invalid

fix the backbone atoms
flag fix, (bbone), set

Geometry optimization
clean invalid

(continues on next page)

1 In other words, if the freemol extension is installed. It is installed by default in the Incentive and the Education version of PyMOL, but it can
also be made to work in the open source version.

6 Chapter 2. Quick start

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

(continued from previous page)

make the backbone atoms free
flag fix, (bbone), clear

2.2 Graphical user interface

This plug-in supplies two GUI tools, available in the Plugin menu of the PyMOL main menu bar.

2.2.1 Betafab GUI

The graphical user interface of the 𝛽-peptide builder can be found in the Plugins menu of PyMOL. The main window
is shown in the figure below.

Fig. 1: The Betafab GUI window explained

Building blocks (𝛼- or 𝛽-amino acids, as well as Ace and NMe capping groups) can be added in three different ways
to the sequence (top of the window):

1. manual input of either a simple amino-acid or a whole sequence (comma separated amino acid abbreviations).
The notation is the same as used by the command betafab2, see Simplified nomenclature

2. one-by-one addition of amino acids using the drop-down selectors.

3. using the quick-access buttons (currently for Ace and NMe capping groups and a test peptide)

2.2. Graphical user interface 7

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

The central part shows the peptide sequence and allows a simple means for editing. Amino acids can be removed,
reordered and even modified. By double-clicking on cells in columns 3-8, properties of the residue (type, sidechains,
stereoisomers) can be changed using drop-down selectors.

The desired secondary structure can also be given in the last column. The drop-downs display the list of the known
secondary structures in the Secondary structure database.

The peptide sequence can be built by supplying a PyMOL model name for it and pressing the “Build” button.

The built model can be saved to .g96 or .crd files using the corresponding push buttons.

2.2.2 Secondary structure editor

pmlbeta provides a graphical utility for editing the secondary structure database. It can be reached via the Plugin menu
of PyMOL

Fig. 2: The secondary structure dialog

The dialog is a simple list of secondary structures, with the possibility to add, duplicate and remove entries. Each
entry can be edited by double-clicking on the cells in the table. Changes are updated only if the OK or Apply button is
pressed. The default values can be restored by the Add defaults button on the toolbar.

Changes to the secondary structure database are saved for the next PyMOL session.

8 Chapter 2. Quick start

CHAPTER 3

𝛽-amino acid residue naming

3.1 General nomenclature

Acyclic 𝛽-amino acids come in four varieties, according to the substitution site (see the figure)

𝛽2 Monosubstituted 𝛽-amino acid, the side-chain is on the 𝛼-carbon.

𝛽3 Monosubstituted 𝛽-amino acid, the side-chain is on the 𝛽-carbon.

𝛽2,3 Disubstituted 𝛽-amino acid, one side-chain on both the 𝛼- and the 𝛽-carbon.

𝛽-Alanine A simple 𝛽-backbone, without side-chains

Fig. 1: The four kinds of 𝛽-amino acids: bare 𝛽-backbone or 𝛽-alanine (a), 𝛽2-amino acid (b), 𝛽3-amino acid (c) and
𝛽2,3-amino acid (d)

9

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

In contrast to their natural counterparts, 𝛽-amino acids do not have a single, generally accepted nomenclature. We
adopt here the following, widely used convention, which emphasizes the homology with 𝛼-amino acids and allows to
account for the absolute conformation (chirality) as well. The general block format is :

<chirality><substitution type>h<side-chain designation>, where:

<chirality> is the designation of the chirality of the substitution site atoms. For monosubstituted 𝛽-amino acids, this
is either (S) or (R), including parentheses. For disubstituted ones, the substitution site is also labelled to avoid
ambiguity, i.e. (2S, 3R) etc.

<substitution type>: either 𝛽2, 𝛽3or 𝛽2,3.

<side-chain designation>: single-letter abbreviation of the proteinogenic amino-acid whose side-chain is referred to.
As for the chirality above, in the case of disubstituted amino-acids the substitution site must be explicitly given
in order to avoid confusion, i.e. (2A,3Q), etc.

We include 𝛼-amino acids in this notation, too, with the following scheme: <chirality>𝛼<side-chain
designation>, where:

<chirality> is similar as for 𝛽2- or 𝛽3-amino acids, i.e. either (S) or (R). Additionally, for D and L are also supported
for convenience1.

<side-chain designation>: is once again the single-letter abbreviation of proteinogenic amino acids

Examples:

monosubstituted:

• (S)𝛽2hV: valine side-chain on the 𝛼-carbon with S chirality

• (R)𝛽3hR: arginine side-chain on the 𝛽-carbon with R chirality

disubstituted:

• (2S,3R)𝛽2,3 h(2A,3L): disubstituted 𝛽-amino acid with an alanine side-chain on the 𝛼-carbon (with S
chirality) and an arginine on the 𝛽-carbon (R chirality)

achiral (bare backbone):

• 𝛽A

𝛼-amino acids:

• (S)𝛼V: L-valine

• (R)𝛼W: D-tryptophan

Two, more complicated examples are shown in the next two figures:

3.2 Simplified nomenclature

In the betafab2 command, essentially the above defined notation is used for defining a 𝛽-peptide sequence, with the
following simplification:

• superscripts are omitted

• instead of the greek letter 𝛽 the capital “B” is used

• commas in amino-acid abbreviations are omitted, they are used instead for separating the subsequent residues
in the peptide chain

1 Note that because for 𝛽-amino acids no internationally agreed convention exists on the D / L nomenclature, their chirality can only be specified
using the unambiguous S / R notation.

10 Chapter 3. 𝛽-amino acid residue naming

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

Fig. 2: (2R,3S)𝛽2,3h(2A,3A) - (2R,3S)𝛽2,3h(2A,3V) - (S)𝛽2hV - (S)𝛽3hK - (2R,3S)𝛽2,3h(2A,3A) - (2R,3S)𝛽2,3h(2A,3L)

Fig. 3: (S)𝛽3hV - (S)𝛽3hA - (S)𝛽3hL - (2S,3S)𝛽2,3h(2A,3A) - (S)𝛽3hV - (S)𝛽3hA - (S)𝛽3hL

• letters S and R, describing the absolute conformation, are not italicized

For example, to construct the above two peptides, the following PyMOL commands can be used:

betafab2 hp6, (2R3S)B23h(2A3A), (2R3S)B23h(2A3V), (S)B2hV, (S)B3hK, (2R3S)B23h(2A3A),
→˓(2R3S)B23h(2A3L)

betafab2 valxval, (S)B3hV, (S)B3hA, (S)B3hL, (2S3S)B23h(2A3A), (S)B3hV, (S)B3hA,
→˓(S)B3hL

In addition, 𝛼-amino acids are also supported with the following notation:

betafab valval, (S)AV, (S)AA, (L)AL, (D)AV, (S)AA, (S)AL

betafab mixed, (S)AV, (S)B3hV, (R)B2hA, (S)AQ, (2R3S)B23h(2C3W)

Additionally, we now support the two most common cyclic beta-residues: 2-aminocyclopentanecarboxylic acid
(ACPC) and 2-aminocyclohexanecarboxylic acid (ACHC) with the syntax:

betafab transachc, (2S3R)ACHC
betafab cisacpc, (2R3S)ACPC

Capping groups can also be added:

N-terminal:

• ACE (acetyl)

• BUT (butyryl)

C-terminal:

• NME (N-methylamide)

3.2. Simplified nomenclature 11

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

betafab ace_valxal_nme, ACE, (S)B3hV, (S)B3hA, (S)B3hL, (2S3S)B23h(2A3A), (S)B3hV,
→˓(S)B3hA, (S)B3hL, NME

3.3 Secondary structure

In addition to designating the amino-acids, the desired fold can also be given in the above notation. Each residue can
be followed by a secondary structure descriptor in one of the following forms:

1. A square bracket-enclosed, space-separated triplet (pair) of floating point numbers, e.g. (S)AQ[-57 -47] or
(S)B3hA[-140.3 66.5 -136.8]

2. The name of an entry in the secondary structure database, enclosed in curly braces, e.g. (S)AQ{Alpha-helix} or
(S)B3hA{H14M}

3.3.1 Single-letter side-chain codes

This is a list of extended single-letter amino-acid sidechain codes recognized by pmlbeta

Letter Side-chain
A alanine
C cysteine (neutral)
CM cysteine (anionic)
D aspartate (ionic)
DH aspartic acid (protonated)
E glutamate (ionic)
EH glutamic acid (protonated)
G glycine (i.e. no side-chain)
HD histidine protonated on N𝛿
HE histidine protonated on N𝜖
HH doubly protonated histidine
H unprotonated histidine
I isoleucine
K lysine (charged)
KN lysine (neutral)
L leucine
M methionine
N asparagine
O ornithine (charged)
ON ornithine (neutral)
P proline (only alpha-amino acid)
Q glutamine
R arginine
S serine
T threonine
V valine
W tryptophan
Y tyrosine

12 Chapter 3. 𝛽-amino acid residue naming

CHAPTER 4

Secondary structure database

Under the hood, pmlbeta maintains a database of secondary structures, which is essentially a bunch of backbone
dihedral angle triplets with labels. This is stored in the form of a Python dict, mapping string labels to tuples of
floating point numbers.

By default the following are defined:

DEFAULT_HELIXTYPES = {
'Z6M': (126.7, 62.6, 152.7),
'Z6P': (-126.7, -62.6, -152.7),
'Z8M': (47.5, 53.5, -104.3),
'Z8P': (-47.5, -53.5, 104.3),
'H8M': (76.8, -120.6, 52.7),
'H8P': (-76.8, 120.6, -52.7),
'H10M': (-77.5, -51.8, -75.1),
'H10P': (77.5, 51.8, 75.1),
'H12M': (92.3, -90.0, 104.6),
'H12P': (-92.3, 90.0, -104.6),
'H14M': (-140.3, 66.5, -136.8),
'H14P': (140.3, -66.5, 136.8),
'SM': (70.5, 176.2, 168.9),
'SP': (-70.5, -176.2, -168.9),
'Straight': (180, 180, 180),
'Straight alpha': (180, None, 180),
'Alpha-helix': (-57, None, -47),
'3_10-helix': (-49, None, -26),
'P-beta-sheet': (-119, None, 113),
'AP-beta-sheet': (-139, None, 135),

}

Corresponding to the following:

13

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

Abbreviation phi theta psi Comments
Z6M 126.7° 62.6° 152.7° from Beke et. al.(2006)
Z6P -126.7° -62.6° -152.7°
Z8M 47.5° 53.5° -104.3°
Z8P -47.5° -53.5° 104.3°
H8M 76.8° -120.6° 52.7°
H8P -76.8° 120.6° -52.7°
H10M -77.5° -51.8° -75.1°
H10P 77.5° 51.8° 75.1°
H12M 92.3° -90.0° 104.6°
H12P -92.3° 90.0° -104.6°
H14M -140.3° 66.5° -136.8°
H14P 140.3° -66.5° 136.8°
SM 70.5° 176.2° 168.9°
SP -70.5° -176.2° -168.9°
Straight 180° 180° 180°
Straight alpha 180° — 180°
Alpha-helix -57° — -47° from PyMOL
P-beta-sheet -119° — 113°
AP-beta-sheet -139° — 135°
3_10-helix -49° — -26°

Editing this list is possible by the corresponding GUI utility, or by the ssdb_* commands.

Changes to the secondary structure database are remembered in the next PyMOL session.

4.1 Python API documentation

14 Chapter 4. Secondary structure database

CHAPTER 5

Residue Topology Recognition

Another useful functionality of pmlbeta is residue topology recognition. For actual work with molecular models an
accurate designation of various portions of the molecule (“residues”, e.g. amino-acids or other building blocks) and
atom naming is often required. While the models constructed by betafab are labeled according to the nomenclature
of the CHARMM force field, re-labeling for a different molecular mechanics force field or labeling an unlabeled
molecule (e.g. obtained from crystallography or NMR experiments) is sometimes needed. This package has the
following methods:

• Given the N-terminal nitrogen and the C-terminal carbon atoms, command renumber_peptide_chain finds and
marks the residues in a peptide chain (either 𝛼 or 𝛽).

• Command residue_topology_candidates finds matching building block topologies from a GROMACS residue
topology database file for each residue in the molecule using graph isomorphishm.

• Command assign_residue_topology assigns atom properties (name, residue name, partial charge) from a corre-
sponding building block topology in a GROMACS topology database

• The functionality of the above two commands is implemented in a user-friendly graphical tool accessible from
the menu.

15

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

16 Chapter 5. Residue Topology Recognition

CHAPTER 6

Commands

The following commands are defined by the pmlbeta plugin:

6.1 𝛼/𝛽-peptide Construction and Manipulation

betafab2 build a beta-peptide

fold_bp fold a beta-peptide into the desired secondary structure

select_bbb select the beta-backbone

6.2 Residue Topology Recognition

renumber_peptide_chain recognize and mark residues in a peptide chain

residue_topology_candidates find matching building block topologies from a GROMACS residue topology database
file

assign_residue_topology assign atom properties from a matching building block topology

6.3 Input / Output

save_crd output to the extended CHARMM CRD format

save_gro output to the GRO format of GROMACS

save_g96 output to the G96 format used by GROMOS and GROMACS

17

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

6.4 Secondary structure database manipulation

ssdb_add add/edit an entry

ssdb_del remove an entry

ssdb_list list the entries

ssdb_dihedrals get the dihedral angles corresponding to an entry

ssdb_resetdefaults reset the secondary structure database to its default state

6.5 Miscellaneous

gmx_beta_backbone_dihedrals_selection create selection files for beta-peptide backbone dihedrals, understandabe
by GROMACS

6.5.1 betafab2

6.5.2 fold_bp

6.5.3 select_bbb

6.5.4 save_crd

6.5.5 save_g96

6.5.6 save_gro

6.5.7 ssdb_add

6.5.8 ssdb_del

6.5.9 ssdb_list

6.5.10 ssdb_dihedrals

6.5.11 ssdb_resetdefaults

6.5.12 gmx_beta_backbone_dihedrals_selection

6.5.13 renumber_peptide_chain

6.5.14 residue_topology_candidates

6.5.15 assign_residue_topology

18 Chapter 6. Commands

CHAPTER 7

Citing pmlbeta

If you find this plugin useful in your research work and publish a paper, the authors would be grateful if you could cite
the corresponding article:

Wacha, András, and Tamás Beke-Somfai. 2021. “PmlBeta: A PyMOL Extension for Building 𝛽-Amino Acid Inser-
tions and 𝛽-Peptide Sequences.” SoftwareX 13 (January): 100654. https://doi.org/10.1016/j.softx.2020.100654.

19

https://doi.org/10.1016/j.softx.2020.100654

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

20 Chapter 7. Citing pmlbeta

CHAPTER 8

Reporting bugs

If you find bugs, errors or other unintentional/clumsy behaviour of the program, please file a bug report at:

https://gitlab.com/awacha/pmlbeta/issues/new

Before filing the report, please take care that you use the most up-to-date version: the bug might have already been
fixed.

A helpful bug report should include:

• Operating system

• PyMOL version

• Python version

• Description of the error

• Expected behaviour

• Detailed steps on how to reproduce the bug

• If applicable, the error messages printed by PyMOL

21

https://gitlab.com/awacha/pmlbeta/issues/new

pmlbeta Documentation, Release 1.0.10.dev10+g2841a2c.d20210927

22 Chapter 8. Reporting bugs

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

23

	Installation
	Requirements
	Installing from a pre-built package
	Manual installation

	Quick start
	Command line
	Graphical user interface
	Betafab GUI
	Secondary structure editor

	-amino acid residue naming
	General nomenclature
	Simplified nomenclature
	Secondary structure
	Single-letter side-chain codes

	Secondary structure database
	Python API documentation

	Residue Topology Recognition
	Commands
	/-peptide Construction and Manipulation
	Residue Topology Recognition
	Input / Output
	Secondary structure database manipulation
	Miscellaneous
	betafab2
	fold_bp
	select_bbb
	save_crd
	save_g96
	save_gro
	ssdb_add
	ssdb_del
	ssdb_list
	ssdb_dihedrals
	ssdb_resetdefaults
	gmx_beta_backbone_dihedrals_selection
	renumber_peptide_chain
	residue_topology_candidates
	assign_residue_topology

	Citing pmlbeta
	Reporting bugs
	Indices and tables

